
GLOBAL NAVIGATION SATELLITE
SYSTEM SOFTWARE DEFINED RADIO

THESIS

Jason McGinthy, Captain, USAF

AFIT/GE/ENG/10-17

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.



AFIT/GE/ENG/10-17

GLOBAL NAVIGATION SATELLITE SYSTEM SOFTWARE DEFINED RADIO

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jason McGinthy, BS

Captain, USAF

March 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



AFIT/GE/ENG/10-17

GLOBAL NAVIGATION SATELLITE SYSTEM SOFTWARE DEFINED RADIO

Jason McGinthy, BS

Captain, USAF

Approved:

//signed// March 2010

John F. Raquet (Chairman) Date

//signed// March 2010

Michael J. Veth (Member) Date

//signed// March 2010

Michael A. Temple (Member) Date



AFIT/GE/ENG/10-17

Abstract

The GNSS world is quickly growing. The United States’ GPS, the European

Union’s Galileo, China’s Compass, and Russia’s GLONASS systems are all developing

or modernizing their signals, and there will soon be more navigation satellites in space

than ever before. The goal of this research was to develop an initial capability for

an AFIT GNSS software receiver. This software receiver is intended to be used for

research purposes at the Advanced Navigation Technology (ANT) Center. First a

GPS-only software receiver was built. It successfully acquired, tracked, and provided

reasonable position estimates. Next, the receiver was successfully modified to acquire

and track a Compass satellite. This only required relatively small changes in the

receiver software. During the tracking process, an interesting finding was discovered

concerning the secondary code structure. There are in fact two secondary codes that

the transmitter alternates. After AFIT’s software receiver was configured properly,

the signal was successfully tracked. Finally, the receiver was modified to track one of

Galileo’s satellites, GIOVE-A. After correct parametric changes were made, successful

acquisition and tracking of the GIOVE-A signal was accomplished. AFIT’s GNSS

software receiver was shown to provide a high degree of flexibility and accuracy in

acquiring and tracking GNSS signals.

iv
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GLOBAL NAVIGATION SATELLITE SYSTEM SOFTWARE DEFINED RADIO

I. Introduction

1.1 Overview

The NAVSTAR Global Positioning System (GPS) has been the dominant Global

Navigation Satellite System (GNSS) for the last few decades. GPS is not only used for

guiding vehicles around unfamiliar locations, it also helps put bombs on target while

allowing minimal collateral damage. However, newer GNSS systems are beginning to

be tested from all over the world. GPS is also modernizing its satellites and adding

new signals, taking advantage of newer signal schemes that have been developed since

the launch of the first block of GPS satellites. With the addition of these new signals

and other GNSS developments, the skies above us are becoming ever more saturated

with signals. From a research point of view, it is important to understand these

signals, and to have a flexible receiver design that can be easily modified to receive

multiple GNSS signals.

1.2 Problem Statement

The goal of this research was to bring the advanced capability for acquiring, track-

ing and decoding navigation data to the Air Force Institute of Technology (AFIT).

This was accomplished by creating a Software Defined Radio (SDR), or more com-

monly referred to as a software receiver in the GNSS community, to allow post-

processing of collected data segments in order to ensure proper acquisition, tracking,

and possible decoding of signals. This receiver was built in-house from scratch ex-
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cept for code provided from Ohio University to import the data collection files. This

receiver is intended for research purposes only, and we are not proposing that it be

developed into an operational military capability.

1.3 Scope

The software receiver was initially only configured for one frequency range: 1557.5 -

1581.5 MHz. This was due to the fact that the receiver front-end does not have a large

enough bandwidth to encompass all of the signals. While only one frequency range

is being collected, GPS, Compass and Galileo signals all fall within the collection

range. This software receiver was not configured to study the GLONASS signals,

not only due to the frequency band being studied, but also due to the fact that

GLONASS uses a different signal modulation scheme. This will be discussed further

in Section 2.4.2. Finally, two data collections were studied with both sets collected

by the same front-end (described in the following section). Data Set 1 was collected

at approximately 1233 UTC on January 22, 2010, and Data Set 2 was collected at

approximately 1305 UTC that same day.

The receiver is currently designed to only post-process the collected data. This

post-processing allows easier initial implementation and easier modification. Cur-

rently there is no requirement for real-time processing, but this will be studied in

future implementations.

1.4 Materials and Equipment

The GNSS software receiver is composed of two parts: a physical hardware front-

end and the software coded receiver processer. The front-end is designed and built

by the Avionics Engineering Center at Ohio University. Figure 1.1 is a picture of a 4-

channel front-end. When delivered to AFIT, the hardware will include an 8-channel
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receiver that enables multiple frequency bands to be studied. At the time of this

research, the front-end has not been delivered to AFIT, so all of the data sets were

collected at Ohio University and sent to AFIT via DVDs.

Figure 1.1. Ohio University Receiver Front-End

1.5 Thesis Organization

Chapter 2 details the background of GNSS receivers including a basic represen-

tation of how a software receiver works. It also explains the front-end that was used

for data collection supplied by Ohio University. Chapter 3 details how the GPS por-

tion of the software receiver was developed. It also provides results and analysis of

collected signals. Chapter 4 details the modifications made under this research to al-

low the GNSS software receiver the capability to track Compass and Galileo signals.
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The results and analysis of these signals are also presented in this chapter. Finally,

Chapter 5 offers conclusions and recommendations of furthering this research.
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II. GNSS Software Defined Radio Theory

2.1 Overview

This chapter will begin by providing background information on GNSS receivers.

Then the current GNSS systems will be compared to show the similarities and differ-

ences. Next, a general description of how a software receiver works will be outlined.

This will entail a detailed description of both the acquisition and tracking procedures.

Finally, a section about the Ohio University front-end will be provided.

2.2 Software Defined Radio

The concept of a SDR has been around for quite some time [22]. In a SDR, Hard-

wired analog components of traditional receivers are replaced with digital components

in order to allow programmable components that allow for greater flexibility. The

SDR allows a user to change the software to quickly modify how it operates. For

example, by changing a line of code, the frequency spectrum can be shifted in order

to look for new signals. This basic idea allows for a flexible Radio Frequency (RF)

device design. In the case of GNSS, this will allow the ability to adapt to the growing

number of signals and systems in our skies. The SDR or software receiver is a highly

flexible system that allows for tracking of not only GPS, but also the European

Union system, Galileo, the Russian system, GLONASS and the new Chinese system,

Compass.
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2.3 GNSS Receiver Background

2.3.1 GNSS Hardware Receivers.

GNSS hardware receivers have been the preferred receiver implementation due

to their lower cost and production in mass quantities. However, these receivers are

designed with the intention of tracking a particular set of signals. These specifica-

tions do not allow for future flexibility. For instance, if a receiver is built only to

use GPS, a whole new receiver would need to be built in order to accommodate a

GPS and Galileo receiver. This is due to the fact that the receivers perform their

acquisition and tracking loops using specific hardware, called Application Specific

Integrated Circuit (ASIC)s. Since each GNSS uses different frequencies and codes,

new hardware would be needed for each new capability that was needed by the user.

Although a hardware receiver can have a firmware update, the whole device may need

to be updated compared to the ability of being changed on-the-fly like an SDR. The

inflexibility of the hardware receivers is one of the main motivation for the GNSS

software receivers [15]. From strictly a militarily viewpoint, the speed in which a

SDR can be modified to adapt to new threats can be invaluable.

2.3.2 GNSS Software Receivers.

GNSS software receivers are gaining more popularity due to their flexibility. Soft-

ware receivers are ideal for and mainly used in research and development due to this

adaptability. Many software receivers have utilized Digital Signal Processor (DSP)s,

Field Programmable Gate Array (FPGA)s, the increasing computational power of

computers, or any combination of the three [24, 7]. The advantages and disadvantages

of these methods are described in [17]. Unlike hardware receivers, only a software

update is needed to add a new tracking capability. Many software receiver applica-

tions are written in high-level computer programming languages such as C++ and
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MATLAB [6]. These programming languages allow easier and quicker changes to the

receiver in order to add a new GNSS signal for acquisition and tracking, in compar-

ison to hardware-based approaches. More information on these signals will follow in

Section 2.4. The actual description of how software receivers acquire and track the

different GNSS satellites will be explained in Section 2.5.

2.3.3 Example of Current Software Receivers.

Software receivers are generally used in the academic world due to the research

value they can add. The greater flexibility and computing powers of university pro-

grams can allow for extensive GNSS studying. Stanford University has published

numerous articles on the GNSS research they have done, such as acquiring and track-

ing Compass and Galileo satellites [9, 8, 10]. Ohio University is also another large

program dealing with GNSS research. They have developed their own GNSS receiver

and published articles dealing with receiver techniques, processing schemes and other

GPS related items [15, 16]. Many other academic research groups have also been

working on GNSS software receivers such as the University of Calgary and Cornell

University [7, 4].

2.4 Current GNSS Systems & Signals

The four current GNSS systems–GPS, Galileo, GLONASS, and Compass–generally

provide positioning information in the same manner. Currently, only GPS and

GLONASS are operational. However, Galileo and Compass have test satellites in

orbit that broadcast signals [6, 9]. There are fundamental differences for each system,

such as frequency bands, multiple access techniques, and spreading code structures.

The following sections will highlight the similarities and differences of the systems.
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2.4.1 Frequency Bands.

Figure 2.1 summarizes the frequency allocations of the current GNSS systems,

and more detail is given in Table 2.1 through Table 2.4. This frequency range is part

of the Ultra High Frequency (UHF) portion of the RF spectrum. As shown, GPS

has three frequency bands: L1, L2, and L5. Galileo uses four bands: E2-L1-E1, E5A,

E5B, and E6. GLONASS uses two bands: G1 and G2. Compass transmits its signals

in four bands: E1, E2, E5B, and E6. GPS, Galileo, and Compass transmit signals at

a single frequency in each specific band to implement Direct-Sequence Spread Spec-

trum (DSSS) Code Division Multiple Access (CDMA). However, GLONASS currently

transmits at multiple frequencies in its bands because it was originally designed using

a Frequency Division Multiple Access (FDMA) technique.

L5, E5A E5B L2 G2 E6 E2 L1 E1 G1

1164 1188 1216 1240 1256

1260

1300

1559

1563 1587

1593

1600 MHz
∣ ∣

Figure 2.1. RF Frequency Allocation Chart

2.4.2 Signal Distinction Techniques.

Since each GNSS systems has multiple satellites, signal discrimination techniques

are used in order to distinguish satellites from one another. As mentioned previously

in Section 2.4.1, two types of modulation are used in GNSS systems. First, GPS,

Galileo, and Compass use DSSS CDMA. CDMA allows all satellites in a particular

GNSS system to transmit at the same frequency. In order to distinguish the satellites,

Psuedorandom Noise (PRN) spreading codes are used. Each satellite has a unique

PRN. The design of these codes will be further explained in Section 2.4.3. These

codes are known by the receiver, which allows it to acquire and track the specific
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satellites.

Second, GLONASS currently uses the FDMA technique. This type of signaling

scheme distinguishes each satellite by carrier frequency. For example, for signals being

transmitted in the GLONASS G1 band, the center frequency is 1602 MHz and the

other channels are separated at 0.5625 MHz spacings. GLONASS also uses a PRN

code in order to enable spread spectrum at each frequency. In GLONASS, all satellites

transmit the same PRN code. However due to FDMA, the PRN is transmitted in the

different frequency channels. Two satellites share one channel, but the satellites are

located on opposite sides of the earth in order for a receiver to only have one satellite

in view [21]. In the near future, GLONASS will begin to use CDMA technology in

order to be more easily integrated into multi GNSS system receivers [11].

2.4.3 Spreading Code Structure.

The current GNSS systems have similarities and differences in the structure of the

spreading codes used to distinguish the satellites. These spreading codes also reduce

the threat of jamming due to the signal being spread over a specified bandwidth.

The codes are used in the acquisition and tracking processes of the receiver which

are described in Sections 2.5.1 and 2.5.2. Currently, GPS uses Gold codes of length

1023 chips for its C/A signals. Gold codes are PRN spreading codes formed from 2

Linear Shift Feedback Register (LSFR)s. All the C/A codes for GPS are generated

by changing the phase of the second LSFR [6]. GPS uses a 10-stage Gold code for

each C/A code. This code is repeated every 1 ms, which enables quick satellite

acquisition. GPS is adding new signals with longer codes of 10,230 and 767,250 chips

on the new L2 band and 10,230 chips on the new L5 band. However, these new codes

are not Gold codes but are formed from LSFRs. These longer codes decrease the

sidelobes of the autocorrelation and crosscorrelation outputs so there will less of a
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chance for interference from other satellites [21]. The spreading code is mixed with

the 50 bps GPS data message and transmitted on a carrier frequency corresponding

to the frequency band. It is to be noted that some of the new signals do not have the

same 50 bps data message mixed with them [21].

Galileo, although not yet fully operational, uses similar code structures to that of

GPS. For example, in the L1 band, Galileo uses a spreading code that is 4092 chips

and repeats every 4 ms. This code is generated by a truncated Gold code sequence.

Once 4092 chips are reached, the LSFR is reset to its initial state. There is also a

secondary code of 25 chips that modulates the 25 specific repetitions of the primary

4092 code to form a tiered code of length 4092 × 25 = 102, 300 chips [6]. The data

message on the L1-B data channel is transmitted at 250 bps [3].

Recently, the structure of Compass codes have been studied by [9] and [8]. It

appears that the signals transmitted on the E2 band are created from an 11-stage

Gold code. It consists of 2046 bits with a 1 ms repeat interval. Compared to GPS, the

Compass E2 PRN code has twice as many chips in the same interval, which equates

to a chipping rate of 2.046 Mchips/sec. Also it appears that this same signal is

being transmitted on E5B. Also on the E2 band, there is a secondary 20 bit Neuman

Hoffman code repeated at a 1 KHz rate. Also the code at E6 appears to be generated

from two 13-stage Gold codes [9].

Although GLONASS employs a FDMA scheme to distinguish satellites, a 511 chip

PRN code is transmitted on the G1 band. Only one code is needed since the satellites

are distinguished by the channel frequency. For more precision a 511,000 chip code is

broadcast on both G1 and G2 bands [21]. Tables 2.1, 2.2, 2.3 and 2.4, show a quick

summary of some of the characteristics of the current GNSS systems.
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Table 2.1. Current GPS Signal Characteristics (Civil Signals) [21]

Signal Name Center Frequency Code Length &
Chipping Rate

L1 C/A 1575.42 MHz 1023 chips
1.023 Mcps

10,230 chips (CM)
L2 1227.40 MHz 767,250 chips (CL)

1.023 Mcps
L5 1176.45 MHz 10,230 chips

10.023 Mcps

Table 2.2. Current Galileo Signal Characteristics (Open Service Signals)[6, 21]

Signal Name Center Frequency Code Length &
Chipping Rate

4092 chips (primary)
E2-L1-E1 OS 1575.42 MHz 25 chips (secondary)

1.023 Mcps
E5A 1176.45 MHz 10230 chips

10.23 Mcps
E5B 1207.14 MHz 10230 chips

10.23 Mcps

Table 2.3. Current Compass Signal Characteristics [9, 8]

Signal Name Center Frequency Code Length &
Chipping Rate

E1 1589.74 MHz N/A
E2 1561.098 MHz 2046 chips (CL)

2.046 Mcps
E6 1268.52 MHz 10,230 chips (I-chan)

10.023 Mcps
E5B 1207.14 MHz 2046 chips

2.046 Mcps
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Table 2.4. Current GLONASS Signal Characteristics[21, 2]

Signal Name Frequency Band Code Length &
Chipping Rate

G1 1602 MHz 511 chips (SPS)
0.511 Mcps

511K chips (PPS)
5.11 Mcps

G2 1246 MHz 511K chips (PPS)
5.11 Mcps

2.5 Receiver Signal Processing

Since GPS is the only operational system using CDMA technology, it will be the

main example for the following sections. Figure 2.2 shows a basic diagram of a GNSS

receiver. The signal arrives at the antenna and through a series of mixers and filters

is downconverted to a manageable Intermediate Frequency (IF). Then it is converted

into a digital signal containing two components, the in-phase portion, I, and the

quadrature portion, Q, through the RF front end. The sampled in-phase signal is

represented as

Ik =
A√
2
CkDk cos(Δ!Btk + �0), (1)

where Ck is the signal’s associated Gold code, Dk is the GPS data message, and Δ!B is

the baseband frequency plus the Doppler frequency in radians/sec [27]. The Doppler

frequency is due to the combined effects of relative motion between the satellite and

the receiver and clock drifts in the satellite and receiver. Throughout this thesis, the

Doppler Shift shall be negative as the satellite is moving towards the receiver and

positive as it begins to move away from the receiver. The sampled phase of the signal

is represented by the following equation:

�k = Δ!Btk + �0. (2)
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Therefore, substituting Equation 2 into Equation 1,

Ik =
A√
2
CkDk cos(�k). (3)

The sampled quadrature signal is similarly expressed as

Qk =
A√
2
CkDk sin(�k). (4)

Finally, the signal components go into the acquisition and tracking algorithms of the

receiver. The antenna and RF front end will not be discussed any further since the

acquisition and tracking loops are the main focus of a software GNSS receiver. Once

the satellite signal is acquired, the navigation data can be decoded from the signal.

Sections 2.5.1 and 2.5.2 will explain in detail the acquisition and tracking processes

of a GNSS software receiver.

Figure 2.2. Basic GNSS Software Receiver Overview Diagram

2.5.1 Satellite Acquisition.

In order for a receiver to use information gathered from any of the GNSS satellites,

the satellite signal must be acquired. The signal must be acquired in order to pass
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the appropriate parameters to the tracking portion of the receiver. More informa-

tion about satellite tracking will be discussed in Section 2.5.2. Figure 2.3 shows the

acquisition process performed by a receiver.

Figure 2.3. Satellite Acquisition Data Flow[25]

The receiver may have no a priori information about which satellites are visible

at the moment it starts. This is called a “cold start,” since the receiver must start

randomly trying to acquire satellite signals. The receiver has no knowledge of its po-

sition or time since the receiver has no information from the GNSS system’s almanac.

A “warm start” occurs when the receiver has a reasonable estimate of its position

or time and has a reasonably current almanac [21]. This is possible if the receiver

was turned off and turned on only a short amount of time later. In this case, the

receiver has a recent, accurate almanac and ephemeris data. It is able to search for

and acquire satellites more quickly since it knows which satellites should be located

in the sky and what the appropriate Doppler shifts should be.

In order for a receiver to acquire a satellite, it must have the proper PRN codes
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stored in its memory so they can be generated in order to match a satellite’s PRN

code. This process utilizes the quasi-orthogonality benefits of Gold codes in order to

keep cross-correlation values much lower than the auto-correlation value of a specific

PRN code of a specific satellite. This allows for a very low probability of locking onto

a satellite with the wrong PRN code.

In order for a receiver to acquire a specific satellite, the ranges for the timing of

the PRN code and the carrier frequency plus Doppler shift must be searched. For

GPS, the PRN code consists of 1023 chips, and depending on the sampling rate of the

receiver, there are an infinite amount of code phases that can be searched. Generally,

independent of the sampling rate, the code phase can be searched in 1/2 chip intervals

allowing 2046 possible code phases. Typically, for a fast moving receiver, the Doppler

Shift can range from ±10 KHz [6]. However, for a stationary receiver, the Doppler

Shift range is approximately ±4 KHz. Nonetheless, in order to properly acquire

an incoming satellite signal, a very large number of samples need to be evaluated

depending on the resolution required. The receiver will only lock onto a satellite

if the correct frequency and code phase are both found. The techniques for the

acquisition portion of the receiver will be described in Sections 2.5.1.1 and 2.5.1.2.

The method in which a satellite is determined to be acquired or not is based on the

search output signal strength and will be discussed in Section 2.5.1.3.

2.5.1.1 Serial Search Method.

The serial search method searches each combination of frequency and code timing

in a sequential manner. Figure 2.4 is a diagram demonstrating the two dimensional

search that much be accomplished. Equation 5 gives a “rule of thumb” relationship

between the integration time and the size of each Doppler bin [29],
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Figure 2.4. 2-Dimensional Acquisition Search Diagram

Doppler Bin Size =
2

3T
(5)

where T is the integration time. If the 8 KHz frequency range is divided into Doppler

bins with sizes of 667 Hz (typical for 1 ms integration time), 12 frequency bins are

created, totaling 12 ⋅ 2046 = 24, 552 different combinations that must be searched

for each satellite PRN code. The incoming Ik and Qk signals are multiplied by each

combination. The procedure starts at the lowest frequency bin (or, if there is a guess

at the Doppler, a bin which is near that guess) and zero time offset and continues

through each 1/2 chip interval and then proceeds to the next bin. It is important

for each Doppler bin to begin at the 0 chip location in order to reduce multipath
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interference since the first signal to arrive is typically the original. This method is

very simple to implement since it just cycles through each combination sequentially.

This is typically how a hardware receiver performs the satellite acquisition process.

However, this method can be quite slow and software receivers are capable of running

faster algorithms which will be discussed in the next section.

2.5.1.2 Fast Fourier Transform Method.

The Fast Fourier Transform (FFT) method has been used since the early 1990s [28],

and is a common method in many software GNSS receivers [5, 12, 15, 18, 19, 20, 23,

24, 26]. This method is similar to the serial method mentioned previously, but instead

of searching each individual bin one at a time, it is able to search all chip offsets in

one Doppler bin simultaneously, greatly reducing the search time. The FFT method

can be used to search all code phase bins in one operation but still must increment

through the frequency bins. However, for this method to be most efficient, the sam-

pled signal and codes should be of length 2n, where n is a positive integer number.

A similar method to the FFT is the Discrete Fourier Transform (DFT) which does

not require lengths of 2n. For the case of GPS, the code length is 1023 chips, so an

extra zero is added to the end of the code to perform the radix-2 FFT. Therefore,

the search time is drastically reduced, since the FFT can be performed very quickly

by today’s processors.

2.5.1.3 Satellite Detection.

From the outputs of the search algorithm, the signal correlation power is deter-

mined by the expression
√

I2 +Q2, or a similar variation. Independent of which

method is used, the satellite is considered acquired if the power level exceeds a set

threshold. This threshold will only be exceeded when the correct frequency and code
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timing are found. Figure 2.5 is an example of the output of a code phase and Doppler

search space. The largest peak indicates the correct Doppler shift and code phase

offset. For a given threshold value of 6× 104, the satellite is detected and the signal

is acquired.

Figure 2.5. Example of Acquisition Search Output

2.5.2 Satellite Tracking.

Once a satellite is detected and signal acquired, the tracking process begins in

order to keep a lock on the satellite since it is continuously moving. There are two

main tracking loops that are used for this process: Phase Lock Loop (PLL) for carrier-

phase tracking and Delay Lock Loop (DLL) for code tracking. A third loop called

a Frequency Lock Loop (FLL) is normally used in the acquisition portion, but can

also be used as a tracking loop and is very similar to a PLL. These loops must work

together for the receiver to track properly. Figure 2.6 illustrates the tracking portion
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of the receiver. The next sections will describe each loop, but it will be assumed that

the other loops other than the one being described are working perfectly in order to

simplify the explanation.

Figure 2.6. Satellite Tracking Loop[25]

2.5.2.1 Phase Lock Loop.

The PLL tracks the phase of the incoming signals with the locally generated

code. This procedure is also referred to as “Doppler Removal” because the Doppler

frequency component of the signal is ideally removed so that only the codes remain

at the desired baseband frequency. This process occurs when a carrier Numerically

Controlled Oscillator (NCO) mixes a reference frequency with the incoming signal. If

the frequencies are identical, then the carrier frequency goes to baseband. This could

also be called “Carrier Removal” since the actual carrier frequency is removed. Once

the frequencies are identical all that is left to match are the phases of the signals. To

better illustrate this, the Ik and Qk signals defined by Equations (3) and (4) need to
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be examined. Figure 2.7 shows a phasor diagram of the total signal that is composed

of these two composite signals.

Figure 2.7. Phasor representation of incoming GPS signal[25]

The phase of the signal as defined in Equation (2) is the main focus in this diagram.

If the incoming signal and receiver generated signal have the same frequency and

phase, then the mixed signal will have all the power in the in-phase portion of the

signal. This is illustrated in Figure 2.8.

Figure 2.8. PLL Phasor example [25]

The output I and Q samples are then accumulated for a period of time typically

ranging from 1 ms to 20 ms and then used in a PLL discriminator algorithm. Table 2.5
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Table 2.5. Phase Lock Loop Discriminators [29]

Algorithm Costas Loop Output Phase Error
sign(I) ⋅Q Yes sin�

I ⋅Q Yes sin 2�
Q/I Yes tan�

atan(Q/I) Yes �
atan2(Q, I) No �

shows a list of PLL discriminators. When dealing with phase, the possibility of a

data bit transition may occur and the PLL discriminator should be insensitive to

this event. A tracking loop which uses a discriminator that is insensitive to the 180∘

phase flip is a Costas loop [29]. The PLL discriminator evaluates the PLL outputs

and determines the phase offset that needs to be sent to the carrier NCO. This total

process is illustrated in Figure 2.9.

Figure 2.9. Detailed view of a Phase Lock Loop [25]

2.5.2.2 Frequency Lock Loop.

The FLL is very similar to the PLL previously described. It is a simpler process

since it is only tracking the frequency and not the phases of the signals. When
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operating properly (i.e., in frequency lock), the frequency difference between incoming

and reference signals will go to zero, but the phase difference will be a constant value.

Figure 2.10 shows a phasor representation of this process. The FLL is typically used

in the acquisition portion of the signal processing since it isn’t needing the precise

phase that tracking requires. Then once the frequency is determined the PLL begins

tracking the signals. The FLL is also advantageous when the system is in a high

dynamic situation since it is more robust to dynamics [29].

Figure 2.10. FLL Phasor example [25]

2.5.2.3 Delay Lock Loop.

The DLL tracks the timing of the received code with a locally generated code

in order to keep lock on the satellite. Since the sampled Ik and Qk signals are

perfectly in phase with the receiver’s frequency generator, only the PRN code and data

code portions of the sampled signals remain. The DLL relies on the autocorrelation

of the incoming PRN code and the NCO generated PRN code. The definition of

autocorrelation for a function, f(t), is

R(�) =

∫

∞

−∞

f(t)f(t+ �)dt. (6)
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The coder produces three versions of the local PRN code which are early, prompt,

and late copies. For example if the chip spacing of the correlators is 1, the early

copy is advanced 1/2 chip of the expected code, the prompt is an exact replica of the

expected code, and the late copy is delayed by 1/2 chip. Then incoming sampled Ik

and Qk signals are multiplied by the three variants of the local PRN code and produce

six correlator outputs, IE , IP , IL, QE , QP and QL. When perfectly tracking (with zero

timing error), the magnitude of the early and late correlator outputs will be equal to

each other and the prompt correlator normalized output will be 1. These outputs are

then sent through accumulators in order to strengthen the carrier-to-noise ratio.

Then the accumulator outputs are then sent to a DLL discriminator. There are

two forms of DLL discriminators, coherent and non-coherent. A coherent discrimina-

tor requires phase lock so all the power is in the I portion of the signal. Non-coherent

discriminators do not require phase lock, but the performance decreases if the fre-

quency estimate gets worse. Table 2.6 lists some coherent and non-coherent DLL

discriminators. The discriminator output determines if a new timing offset is to be

sent to the NCO to either speed up or slow down the code. Figure 2.11 illustrates

this DLL process.

2.5.3 Pre-Detection Integration Time.

The Pre-Detection Integration Time (PIT) is the length of integration time for the

correlators in the acquisition and tracking loops. Typically for GPS, the PIT starts

at 1 ms since that is the length of one C/A code epoch. However, once the tracking

loop is properly locked onto the signal, the PIT can be increased in order to increase

signal to noise ratio. Unless special coding has been implemented, the longest PIT

is normally 20 ms due to the fact that each data message bit is 20 ms long. If the

PIT were to be longer than 20 ms, there is the possibility of a bit transition occurring
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Figure 2.11. Detailed view of a Delay Lock Loop[25]

during the integration which could significantly decrease the signal to noise ratio.

2.6 Ohio University Receiver Front-End

The Ohio University Avionics Engineering Center has developed their own GNSS

receiver named Transform-Domain Instrumentation GNSS Receiver (TRIGR) [16].

AFIT has purchased an 8-channel model for researching GNSS signals. Figure 1.1

shows an image of the physical hardware that receives the signal. Using the GPS

L1 band and Figure 2.12 as an example, the received RF signal from the antenna is

first downconverted to a 70 MHz center frequency, passed through a bandpass filter,

downconverted a second time, passed through a second bandpass filter, and finally

sampled at a 56.320 MHz sampling rate. (This provides a baseband sampled signal

centered at 13.68 MHz.) The signal then passes through a 12-bit Analog-to-Digital

converter. This digital signal is then separated into 1 ms blocks of data. The software

receiver then reads in these blocks of data one at a time. Figure 2.12 shows a diagram
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Table 2.6. Delay Lock Loop Discriminators [29]

Coherent
IE − IL

Non-Coherent
∙ Dot product power

(IE − IL)IP + (QE −QL)QP

∙ Early minus late power
1

2
[(I2E +Q2

E)− (I2L +Q2
L)]

∙ Early minus late envelope
1

2
[
√

I2E +Q2
E −

√

I2L +Q2
L]

∙ Normalized early minus late envelope√
I2
E
+Q2

E
−

√
I2
L
+Q2

L√
I2
E
+Q2

E
+

√
I2
L
+Q2

L

of how this process works inside the receiver’s front-end.

2.7 Summary

This chapter described the background of SDRs and software receivers. The com-

parison of hardware and software receivers was also presented. Some examples of

groups that are using software receivers was provided. Next, the major GNSS systems

were compared to provide insight into the receiver modifications needed to encom-

pass all of these signals. The next sections then explained how a software receiver

works. Finally, the Ohio University provided front-end was described to explain how

the signal is manipulated from the antenna to the actual digital sample outputs.
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Figure 2.12. Ohio University Receiver Front-End Diagram[16]
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III. GPS-Only Software Defined Radio

3.1 Overview

This chapter describes the development of the AFIT GNSS SDR. First, a GPS-

only receiver was designed. This chapter will discuss this process including such topics

as the overall system process flow, PRN generation, target acquisition and tracking,

post-tracking calculations, data message decoding, and position estimation. Chap-

ter IV will describe the modifications made to the GPS receiver code to incorporate

Compass and Galileo. The results for these systems will be are presented there as

well.

3.2 Overall System Process Flow

In order to determine what satellite signals are in the data collections, the receiver

was first set to an acquisition-only mode. All 32 GPS satellites were searched for, and

the found satellites were then used in the rest of the receiver. This allowed quicker

processing once the known satellites were only being tracked. Next, each satellite

signal was individually run through the receiver to be tracked and the outputs were

saved. After all the satellites were tracked, the stored outputs for pseudorange calcu-

lations were input into the pseudorange estimation procedure, which is explained in

Section 3.7.3, to determine synchronized pseudoranges. The pseudoranges were then

stored in a file, which subsequently was used in the position estimation procedure,

which is described in Section 3.7.4. Figure 3.1 illustrates the processes flow.

3.3 GPS PRN Generation

In order to generate the PRNs for the GPS satellites, the LSFR structure must be

known. There are many GPS C/A code generators available, since the information
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Figure 3.1. Software Receiver Flow Diagram

is open to the public from many textbooks and the ICD-GPS-200c [1, 6, 21]. With

the known generator, a MATLAB script can be written to generate the PRNs.

3.4 GPS Acquisition

There was no prior knowledge as to which satellites were in view at the data collec-

tion time, so all satellites had to be searched for first. As discussed in Section 2.5.1,

acquiring a satellite requires searching through the appropriate Doppler Shift and
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code phases. A coherent integration time of 1 ms with 5 non-coherent integrations

was used. Therefore, 5 ms of data was sent into the acquisition process. The incom-

ing signal was sampled at a rate of 56.320 MHz. Therefore, each millisecond block of

data contained 56320 samples.

Next, every 11 samples of the sampled signal were averaged together which reduced

the number of samples to 5120 and allowed a code phase spacing of 1/5 chip. A replica

PRN code was locally generated and divided into the appropriate number of bins. For

the particular data sets provided, a Doppler Shift range of ±5000 Hz was searched.

The FFT search algorithm was implemented in order to reduce the search time. Since

there are 5 non-coherent integrations performed, the data is integrated at 1 ms PITs

and then added non-coherently five times forming a more pronounced peak. This

larger peak is then easier to differentiate from the noise floor of the rest of the search

space. After the search, the location of the peak determined the Doppler Shift and

code phase. Figure 3.2 shows the acquisition result of PRN 27. The peak is very

evident compared to the noise levels.

In order to determine whether a signal is present or not, 3 consecutive sets of

5 ms of data were processed by the acquisition algorithm. For each set, the maximum

peak was determined. If at least 2 of the 3 peaks were in the exact same location,

it was assumed that a signal was present [13]. Once a signal is determined present,

the initial frequency and code phase parameters are then fed into the tracking loop

algorithm.

3.5 Tracking

With the approximate Doppler Shift and code phase of the beginning of the C/A

code epoch, the tracking loop began to track the signal. The signal data is read in

from the provided files using adapted code provided by Ohio University. The provided
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Figure 3.2. Successful Acquisition of GPS Signal for PRN 27

data is separated into 1 ms blocks of data. Since the code phase of the signal can be

any of the 56320 samples, the sample delay of the signal is calculated by multiplying

the code phase by the sample frequency. The data was read into a 2 ms buffer in

order to allow the skipping of blocks needed for the alignment of the sample delay.

The 1 ms data block correctly locating the beginning of the C/A code epoch was then

output from the buffer. This process essentially initializes the C/A code delay to a

value close to zero (meaning that the PRN code sequence starting at zero lines up

with the incoming signal sequence).

3.5.1 Doppler Removal.

The next part of the tracking process was the removal of the carrier frequency and

Doppler Shift. This was performed by mixing the incoming signal with the signal’s

IF of 13.68 MHz to reduce the carrier frequency to baseband. The NCO can change
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the actual IF based on the change in the Doppler Shift. The carrier NCO speeds

up or slows down the rate at which the IF changes based on the outputs of the

FLL/PLL filter. This will be discussed in further detail in Section 3.5.4. For the

Ohio University data, the signal is still the real-valued components until the Doppler

removal. In order to separate these components, the signal is mixed with a cosine

and a sine wave at the current Doppler frequency and phase. These components are

represented in Equations (7) and (8) [27].

I1k =
A√
2
CkDk cos (�k − �rk) (7)

Q1k
=

A√
2
CkDk sin (�k − �rk) (8)

where �k is the current phase of the signal and �rk is the reference phase. Af-

ter this procedure if the signal phase and reference phase are equal, the in-Phase

and quadrature components, I1k and Q1k
, are further reduced as depicted in Equa-

tions (9) and (10).

I1k =
A√
2
C1k

D1k
(9)

Q1k
= 0 (10)

These new signals correspond to the same I1k and Q1k
in Figure 2.6. After this

carrier wipe-off, the signal continues to the correlation process.

3.5.2 PRN Code Removal.

After the Doppler removal, the PRN code is removed from the signal. As previ-

ously mentioned in Section 2.5.2.3, the incoming signal is correlated with three locally

generated versions of the PRN code. These three versions are Prompt, Early, and
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Late corresponding to a timing offset based on the DLL discriminator’s chip spac-

ing. The chip spacing for these correlators was set to 0.4 chips. After the correlation

process was performed, the output was then summed to form one value from each cor-

relation. MATLAB easily performs this operation by matrix multiplication as shown

in Equation (11).

⎡

⎢

⎣

IP IE IL

QP QE QL

⎤

⎥

⎦
=

⎡

⎢

⎣

I1k

Q1k

⎤

⎥

⎦
×
[

P E L

]

(11)

P , E, and L represent the prompt, early and late versions of the PRN code. I1k ,

Q1k
, P , E, and L are all 1 × 56320 long vectors. These summed output values are

labeled IP , IE, IL, QP , QE and QL and are then sent to the discriminators as described

in Section 2.5.2.3.

3.5.3 Discriminators.

The accumulated correlation outputs enter the FLL, PLL and DLL portion of the

software receiver. The FLL discriminator used for this receiver is shown in Equa-

tion (12) [29].

FLLout =
ATAN2(cross, dot)

(t2 − t1)2�
(12)

where

dot = IP1 ⋅ IP2 +QP1 ⋅QP2

cross = IP1 ⋅QP2 − IP2 ⋅QP1

The PLL used in this project is the ATAN(QP

IP
) Costas Loop discriminator from

Table 2.5. This decision allowed the loop to be insensitive to the 180∘ phase change
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that occurs when a bit flips. For this receiver, the FLL is only on for the first 120 ms

and then it is turned off as the PLL continues the phase tracking of the signal. The

PLL does not begin tracking until after 40 ms have passed in order to allow the

FLL to lock in on the right frequency. The FLL/PLL discriminator outputs are then

passed to the FLL/PLL loop filter to determine the change in the Doppler Shift and

allows for precise tracking of the frequency.

The DLL discriminator chosen for this receiver is the normalized early minus

late envelope non-coherent discriminator. This was chosen due to the fact that the

discriminator does not need to know the actual power levels from the correlator

outputs ahead of time (since they are normalized). This discriminator runs the entire

time that the signal is being tracked. The DLL discriminator output is then passed

onto the DLL loop filter in order to determine and track the proper code phase.

3.5.4 FLL/PLL Filter.

The FLL/PLL filter design chosen for this receiver is a first-order loop for the FLL

aiding the second-order loop of the PLL. Figure 3.3 displays a block diagram of the

combination of these filters with the implementation of a digital bilinear transform

integrator for the second-order PLL loop. The inputs to this filter are the outputs

from the FLL and PLL discriminators. It must be noted that these inputs are in

units of Hertz, therefore, the noise bandwidth parameters are also in units of Hertz.

The noise bandwidth (Bn) for a first-order filter is calculated by Equation (13) [29],

and the Bn for a second-order filter is calculated using Equation (14) [29].

Bn =
!0

4
(13)

Bn =
!0(1 + a22)

4a2
(14)
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Figure 3.3. Block diagram of first order digital loop filter aiding a second order digital
filter implemented with a digital bilinear transform integrator adapted from[29].

where

a2 =
√
2

Normally, a Bn is set and then !0 is calculated using either Equation (15) for a

first-order loop or Equation (16) for a second-order loop [29].

!0 =
Bn

0.25
(15)

!0 =
Bn

0.53
(16)

The steady state error for the first-order filter is Ṙ
!0

, and the steady state error for

the second-order filter is R̈

!2

0

[29].

Initially the BnF
and BnP

were set at 20 Hz for both the FLL and PLL portions of
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the filter. This value was then decreased as the PIT increases. This will be described

later in Section 3.6.2. The output from this filter is the current change in the Doppler

Shift. This is then passed to the NCO to update the carrier timing of the tracking

loop and will be further discussed in Section 3.5.6.

3.5.5 DLL Filter.

The DLL filter design for this receiver is a first-order loop. The BnD
is determined

using Equation (13). This is the same filter design used for the FLL described in the

previous section since both loops are first-order filters. The initial BnD
for the DLL

filter was set at 5 Hz. The input to this filter is the DLL discriminator output (in

units of chips) and the filter output is in units of chips/second. This filter output is

sent to the code time NCO in order to update the speed of the reference PRN code

generator.

3.5.6 NCO Updates.

As previously mentioned in Sections 2.5.2.1 and 2.5.2.3, the carrier NCO changes

the frequency of the local reference signal while the code NCO changes the rate at

which the PRN code is generated. The NCOs rely on inputs from the loop filters

described in Sections 3.5.4 and 3.5.5.

3.5.6.1 Carrier Time Updates.

Since the satellite is constantly moving in its orbit, its velocity is changing in

reference to the receiver. Additionally, receiver motion (if present) and satellite and

receiver clock drifts contribute to an apparent velocity or change in velocity (accel-

eration). This rate of change of velocity is the change in frequency that must be

matched by the NCO to maintain lock on the signal. The output of the FLL/PLL
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filter is the updated Doppler Shift and then is converted to a value that controls the

NCO’s carrier time rate change. This value is computed by Equation (17).

corrcarrier =
fd
fIF

(17)

where

fd = fdold + �fd (18)

fd is the Doppler Shift (and will be explained further in Section 3.5.7), and fIF is

the IF. The corrcarrier value is then used in the carrier time updating algorithm to

produce the new carrier time vector. Equation (19) illustrates this process.

[carrier time vector] = (end of previous carrier time vector)

+ [1 ms time vector]× (1− corrcarrier) (19)

where

[1 ms time vector] = [Ts 2Ts 3Ts ... PIT]

With these vectors formed, the reference signals are created. Equations (20) and (21)

represent the locally generated reference signals, Iref and Qref .

Iref = cos (2�f [carrier time vector]) (20)

Qref = sin (2�f [carrier time vector]) (21)

Effectively, the corrcarrier speeds up or slows down the time vector, which has the

effect of increasing or decreasing the frequency of the reference carrier signals.
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3.5.6.2 Code Time Updates.

In order for the signal to be tracked, the timing of the PRN code needs to accurate.

This requires the code NCO to update the code time so that the locally generated

signal’s PRN is within the receiver’s correlator chip spacing. The output of the DLL

discriminator is units of chips which is then sent to the NCO. This receiver also uses

velocity aiding from the FLL/PLL tracking loop filter to keep track of the change

in the Doppler Shift. Equation (22) shows how the value for the NCO controller is

calculated,

corrcode =
DLLout × !0D

Rc

+
fd
fc

(22)

where DLLout is the output from the DLL discriminator, !0D
is calculated from

BnD
as described in Section 3.5.5, Rc is the chipping rate of the PRN code, which

is 1.023 Mchips/sec, fd is the Doppler Shift, and fc is the carrier frequency of the

signal, which for L1 is 1575.42 MHz. The corrcode is then inserted into Equation (23)

in order to update the new timing of the locally generated PRN code.

[code time vector] = (end of previous code time vector)

+ [1 ms time vector]× (1− corrcode) (23)

3.5.7 Doppler Correction.

The Doppler Shift is continuously being calculated by the receiver from the output

of the FLL/PLL tracking loop as previously mentioned in Section 3.5.6.1. This helps

maintain the correct frequency for the receiver to use in order to properly track a

satellite during its orbit. Figure 3.4 shows the Doppler Shift of PRN 20 for Data
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Set 1. It is clearly seen that the Doppler frequency increases throughout the duration

of the data set. The other satellites exhibit similar results since each satellites has the

same general motion from rising, traveling overhead, and then setting. The Doppler

Shifts for each satellite are shown in Figures 3.5 and 3.6 for the first and second data

sets, respectively. In GNSS terms, a satellite moving away will have a positive Doppler

Shift, while a satellite that is approaching the user will have a negative frequency. A

Doppler Shift of 0 Hz indicates that the satellite is directly above the user assuming

that the receiver antenna is stationary and the satellite and receiver clock drifts are

ignored. However due to the clock drifts, there is rarely a 0 Hz Doppler Shift even

with zero relative motion between the satellite and receiver antenna.

0 5 10 15 20 25
−1850

−1845

−1840

−1835

−1830

−1825

−1820

−1815

−1810

−1805

−1800

D
op

pl
er

 V
al

ue
s 

(H
z)

Time (s)

Doppler Shift for PRN 20

Figure 3.4. GPS Doppler Shift for PRN 20 for Data Set 1. The continual increase of
the Doppler frequency is expected due to the path that the satellite travels starting at
a rising position, moving overhead of the receiver, and then eventually setting below
the horizon.

Also interesting to note is the appearance and disappearance of satellites. The
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Figure 3.5. GPS Doppler Shifts for Data Set 1

satellites with PRNs 08 and 11 have large positive Doppler Shifts in Data Set 1,

indicating that they are about to go below the horizon and out of view of the antenna.

As expected in Data Set 2, these satellites are no longer being tracked. Also, the

satellite with PRN 02 appeared in the second data set (with a large negative Doppler

indicating it just rose above the horizon).

3.6 Post-Lock Calculations

Prior to this point, the receiver was running for a set amount of time in order to

determine if the signal lock was present. For this receiver, the signal was determined

to be locked on if there was bit synchronization. The following sections will describe

bit synchronization as well as other algorithms performed after this synchronization

has occurred.
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Figure 3.6. GPS Doppler Shifts for Data Set 2

3.6.1 Bit Synchronization Approach.

In order to increase the PIT, decrease the noise bandwidths of the tracking filters

and determine the data bits, bit synchronization must occur. The method chosen

for bit synchronization was adapted from the approach described in [27]. First the

tracking loop is run at 1 ms PIT since there can be a bit flip at any epoch since

the data bit boundaries are unknown to this point. Bit flips are then counted by

the receiver and stored into location bins. Since the L1 C/A code data message

contains 20 ms bits, there are 20 bins possible for a bit flip. A bit flip is determined

by comparing the sign of the previous epoch to the current epoch. Nominally, if a

signal is being tracked properly, one bin will begin to accumulate most of the bit

flips. Therefore, a count threshold and bit ratio were chosen to ensure proper data

bit locations.

For this receiver, the count threshold was set to 15 and the bit ratio was set at 3.
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These values were determined by trial and error in order to filter out signals that

could not be tracked due to low C/N0, but still allow stronger signals to successfully

be tracked. After one second of data is processed, the bins are sorted from highest

to lowest. If the first bin surpasses the count threshold, then the first bin is divided

by the second bin and compared to the bin ratio. If the bin ratio is surpassed, then

bit synchronization has been accomplished. The first bin’s corresponding millisecond

location is determined to be the start of a data bit. Figure 3.7 shows an example

of a successful bit synchronization bin histogram. Figure 3.8 is an example of bit

synchronization failure.
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Figure 3.7. Histogram of a successful bit synchronization. As can be clearly seen, the
number of data bit transitions exceeds the threshold of 15, and the bit ratio is greater
than 3.
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Figure 3.8. Histogram of an unsuccessful bit synchronization. The threshold was set
to 15 and the bit ratio was set to 3. Numerous bins exceed the threshold, indicating
that a lock on the signal did not occur.

3.6.2 PIT & Bn Changes.

Once the location of data bit transitions is determined, the PIT is increased and

the Bn is decreased to provide better tracking capabilities, because discriminator

outputs are less noisy with longer PITs. In reality, the receiver is always integrating

the signal with the reference copy at 1 ms intervals, but the PIT is changed by

summing up the resulting integrations for different amounts of time. The receiver is

configured to increase PITs in steps in order to ensure continued lock of the signal.

After the data bit start location is determined from the bit synchronization algorithm,

the PIT is then increased to 2 ms for a length of 200 ms. One must note that the

length of time that a PIT is running must be a multiple of 20 ms in order not to

have a possible data bit transition during the PIT. The BnP
is decreased to 15 Hz

while the BnD
is decreased to 1 Hz. After the 200 ms, the PIT is then increased
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Table 3.1. Summary of PIT and Bn changes. Note that Bnf
is not included because

the FLL is turned off after 120 ms of data is processed.

Time (s) PIT (ms) BnP
(Hz) BnD

(Hz)
0 1 20 5
1 2 15 1
1.2 4 12 0.25
1.4 20 10 0.05

to 4 ms for another 200 ms, and BnP
is decreased to 12 Hz and BnD

is lowered to

0.25 Hz. Once again after 200 ms, the PIT is increased to its final length of 20 ms,

and BnP
is decreased to its final setting of 10 Hz and BnD

is lowered to 0.05 Hz. These

values were chosen based on trial and error, and after each decrease the discriminator

outputs were stable after each 200 ms step. Table 3.1 summarizes the changes in

PITs and Bns at the appropriate times for this receiver.

Figure 3.9, Figure 3.10 and Figure 3.11 show the FLL, PLL and DLL discrimi-

nator outputs, respectively, after the first 2 s of a data collection to clearly show the

reduction in noise from the outputs as the PIT and Bn changes. Figure 3.12 and

Figure 3.13 show the PLL and DLL discriminator outputs, respectively, for a full

data run. As stated earlier, the FLL is turned off after 120 ms and the PLL does

not start until 40 ms. Therefore, the full FLL discriminator plot would only display

0 after 120 ms and is not included. Figure 3.14 displays the time domain scatter plot

which highlights the change in magnitude in the correlator normalized values as the

PIT increases. As is clearly seen, most of the signal is located in the In-phase portion

of the signal.

3.6.3 Carrier-to-Noise Density Estimation Calculation.

Estimating the Carrier-to-Noise Density (C/N0) provides an estimate of the re-

ceiver signal strength. This method is taken from [27]. C/N0 is estimated by compar-

43



0 0.5 1 1.5 2
−200

−150

−100

−50

0

50

100

150

200

F
LL

 O
ut

pu
t (

H
z)

Time (s)

PRN 17 FLL Discriminator Output

Figure 3.9. PRN 17 FLL Discriminator Output Over 2 Seconds. Note that the FLL is
turned off after 120 ms of processing data.

ing signal-plus-noise power in two different bandwidths. Total power measurements

are determined in 1/T noise bandwidths (wide-band power–WBP) and 1/MT noise

bandwidths, (narrow-band power–NBP). Equation (24) details how WBP was calcu-

lated and Equation (25) shows how NBP was determined.

WBPk =

(

M
∑

i=1

(I2Pi
+Q2

Pi
)

)

k

(24)

NBPk =

(

M
∑

i=1

IPi

)2

k

+

(

M
∑

i=1

QPi

)2

k

(25)

Each ktℎ value is the summation of the past M samples of prompt In-phase (IP )

and Quadrature (QP ) correlator outputs. These outputs are taken at 1 ms intervals

before the summation of correlator outputs if the PIT is longer than 1 ms. For this
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Figure 3.10. PRN 17 PLL Discriminator Output Over 2 Seconds. Note the decrease
in the noise at each PIT & Bn change interval.

receiver, M was set to 20 samples. Once these values are determined, a normalized

power (NP) was defined as

NPk =
NBPk

WBPk

(26)

Once NP is calculated, there are two methods described in [27] to determine the

C/N0. The first method is based off of statistics from NP. The mean and standard

deviation of NP can be used to determine the C/N0 by looking at Figure 3.15 based

on a M = 20.

For the second method after NP is calculated, Equation (27) determines the mean

normalized power (�̂NP ) after K measurements. This receiver has K set to 50.

�̂NP =
1

K

K
∑

k=1

NPk (27)
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Figure 3.11. PRN 17 DLL Discriminator Output Over 2 Seconds. Note the decrease
in the noise at each PIT & Bn change interval.

This measurement is then used in the following C/N0 estimator described as

Ĉ

N0

= 10 log10

(

1

T

�̂NP − 1

M − �̂NP

)

(28)

C/N0 measurements are then updates every second since M = 20 and K = 50.

Figure 3.16 shows the C/N0 estimates for Data Set 1. Figure 3.17 shows the C/N0

estimates for Data Set 2. These values are very reasonable for GPS power levels. Ohio

University also calculated some C/N0 values from Data Set 2 with their software

receiver in order to ensure that the AFIT in-house software receiver was working

properly. These values are presented in Figure 3.18 [14]. As is clearly seen, the

AFIT and Ohio University values are very similar, validating the AFIT software

receiver. Although the software receivers differ, it must be noted that all values by

both receivers are from the C/N0 estimation approach given by Equation (28). The
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Figure 3.12. PRN 17 PLL Discriminator Output for Data Set 2.

satellites in Figure 3.18 are the only satellites that were both tracked by the AFIT

and Ohio University receivers.

3.7 Post-Processing Results

After the acquisition and tracking portions of receiver have been accomplished,

the final output of these is the data message. Figure 3.19 shows the entire message

from the full data run, and Figure 3.20 shows a shorter portion to highlight the data

bits. Once the data message was output, the decoding of the message began.

3.7.1 Data Bit Determination & Decoding.

The output message was composed of 1s and -1s and was mapped to 0s and 1s

respectively for the decoding process. With the structure of the GPS data message

as defined in the ICD-GPS-200c [1] known, the data message is easily decoded. A
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Figure 3.13. PRN 17 FLL Discriminator Output for Data Set 2.

complete frame from the GPS data message is 30 s long and composed of five 6 s

subframes each containing 300 bits. Each subframe begins with a defined preamble

consisting of 8 bits: 1 0 0 0 1 0 1 1. First, the data bits are correlated with the preamble

to determine possible correct locations of the beginning of a subframe. A check for

the preamble with sign ambiguity is conducted in case there is a sign change on the

message since the receiver can really only track bit changes, not absolute bit values.

It must be noted that the preamble can sometimes be found at random points in the

message, since the data bits can contain the same combination of bits. Therefore,

once location of the preamble are located, an algorithm is run to determine that the

preambles are spaced about by 300 bits (the length of a subframe). Once the start of

subframes are located, the message components can be deciphered. The next portion

of the message that is meaningful to this receiver is the Handover Words (HOW)

because it contains the subframe identifier and Z-count, which will be described in
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Figure 3.14. PRN 17 Time Domain Scatter Plot. This illustrates that all the data
message is in the In-Phase portion of the signal. The tight groupings indicate a strong
lock on the signal. Note that the points start near the center and then increase due to
the increasing PIT. The points that are off of the I-axis occurred during initial pull-in.

the following section.

3.7.2 HOW Decode & Z-Count Determination.

The purpose of this receiver is to determine pseudoranges in order to calculate

position. Therefore, only the Time of Transmission (TOT) was needed to determine

precise timings for the GPS signal. The TOT is interpreted from data in the HOW.

The first 17 bits of the HOW are the truncated Z-count. The Z-count is a Time of

Week (TOW) counter that increments every 1.5 seconds. Therefore, to determine

the true TOW, the Z-count must be multiplied by 1.5. This TOW is the TOT for

the next subframe, but in order to determine the TOT for the current subframe, 6 s

must be subtracted from the TOT. This TOT then becomes a reference time for the
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Figure 3.15. Statistics of NP for M = 20.[27]

pseudorange to be calculated.

3.7.3 Pseudorange Calculation.

After the TOT is determined for a specific signal, the satellite’s transmit time can

be estimated. Since there are several satellites, the transmit time must synchronized

for all of the satellites. This was accomplished by calculating a millisecond offset

value, which is the difference between the TOT and the receiver’s reference time at

the moment of transmission. This value is then rounded to the nearest millisecond

and added to the reference clock. This produces the transmit time of the signal,

excluding clock errors.

Next the received time was calculated. First a sample travel time was estimated

by subtracting the first transmit time value from the first received time value. Then

a desired travel time was calculated a desired pseudorange value of 20,000 km to
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Figure 3.16. C/N0 Estimates of GPS Satellites for Data Set 1.

estimate an average signal travel time. Finally, the receiver time correction was

calculated by subtracting the desired time from the sample time. This correction

value was then subtracted from the actual receiver time to produce the received time,

excluding clock errors.

After all the timing corrections were made, the actual pseudoranges were esti-

mated. Equation (29) represents the pseudorange estimate calculation,

� = c(Tr − Tt) (29)

where � is the pseudorange, c is the speed of light, Tr is the receiver time, and Tt is the

transmit time. Since the TOT is only transmitted every subframe, the pseudoranges

must be interpolated to fill in the time between the 6 s gaps. The interp1 MATLAB

function was used for this task and created all of the pseudorange estimates.
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Figure 3.17. C/N0 Estimates of GPS Satellites for Data Set 2.

3.7.4 Position Estimate and Errors.

Once all the pseudoranges were calculated, the ephemeris for the satellites was

obtained to begin user position estimation. With the ephemeris from the day of

data collection, the satellites’ orbits can be determined. Next the actual range of the

satellites are used in an iterative least squares process similar to that shown in [21] to

calculate receiver (antenna) position and clock error. Then the true position of the

antenna is compared to the estimated position in order to calculate position error.

Figure 3.21 shows the errors in the North, East and Vertical directions for Data Set 1,

and Figure 3.22 shows the errors in the North, East and Vertical directions for Data

Set 2.

The vertical measurement typically is the largest position error from a receiver

due to the largest pseudorange uncertainty being in the tangential vertical direction.

Therefore if the vertical error is ignored, a surface error can be estimated from the re-
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Figure 3.18. C/N0 Estimates of GPS Satellites for Data Set 2 by Ohio University.
Note the excellent agreement from the different receivers. The same C/N0 estimation
from [27] was used by both receivers. [14]

maining North and East direction errors. Figures 3.23 and 3.23 show the North versus

East directional errors from Data Set 1 and Data Set 2, respectively. The respective

residual errors from the position estimates are presented in Figures 3.25 and 3.26.

The position errors from the first data set are significantly better than the posi-

tion errors of the second data set. Although there are many factors that can cause

errors in positioning, one important factor here is the fact that the first data set

had 8 satellites to estimate a position while the latter data set only had 7 satellites.

While only 4 satellites are needed to determine position and clock error, the more

satellites available will allow a more precise position estimation. Many commercial

GPS receivers provide errors under 10 meters. However, since this receiver did not

incorporate any error mitigation algorithms for such errors caused by the ionosphere

and troposphere, obtaining a position error of under 10 meters validates the receivers
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Figure 3.19. PRN 16’s Data Message

capability to acquire, track and provide a reasonable position.

3.8 Summary

Chapter 3 discussed the methods used by the software to acquire and track GPS

satellites. First the correct PRNs were needed. Once these were generated the satellite

needed to be acquired and then successfully tracked by the receiver. Proper tracking

allowed the decoded of the navigation message to allow pseudorange estimates. Once

all the pseudoranges were calculated, the user’s position was estimated and was shown

to be reasonable, given that no additional error mitigation techniques were applied.
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Figure 3.20. PRN 17’s Data Message Expanded View to Highlight Data Bits
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Figure 3.21. Position Error: North, East & Vertical for Data Set 1.
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Figure 3.22. Position Error: North, East & Vertical for Data Set 2.
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Figure 3.23. Position Error: North & East for Data Set 1.
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Figure 3.24. Position Error: North & East for Data Set 2.
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Figure 3.25. Position Residuals for Data Set 1
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Figure 3.26. Position Residuals for Data Set 2
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IV. Compass and Galileo Software Defined Radio

Modifications

4.1 Overview

This chapter describes the modifications made to the GPS SDR described in the

previous chapter to track both Compass and Galileo signals. All the data collected

for this GNSS SDR was collected in the E2-L1 bands from Figure 2.1. Therefore,

only the Compass E2 and Galileo L1 signals are used in this receiver (in addition to

GPS L1). The receiver has different configurations dependent on which satellite sys-

tem is currently being tracked. The SDR parameter file is configured to load certain

parameters for each GNSS. Since Compass and Galileo do not have full constellations

in orbit, pseudorange and position estimates were not computed (a pseudorange for

Compass cannot be determined since there is no official documentation of the signal

structure at this time). The remaining results will be presented following the respec-

tive GNSS SDR modifications for each system. Section 4.2 details the modifications

made to track Compass, and Section 4.3 explains the modifications made to track

Galileo.

4.2 Compass GNSS SDR Modifications

The following sections detail the appropriate changes made under this research to

incorporate the successful acquisition and tracking of the Compass E2 signal. The

Compass signal structure is different from that of GPS and Galileo due to the inclusion

of a secondary code mixed with the primary PRN. After the secondary code is applied

properly, the rest of the receiver works like the GPS portion except for some initial

parameter changes.
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Table 4.1. Compass E2 I-Channel 11-Stage Gold Code Polynomials and Initial States[9]

Polynomial 1 X11 +X10 +X9 +X8 +X7 +X + 1
Initial State 1 [0 1 0 1 0 1 0 1 0 1 0]
Polynomial 2 X11 +X9 +X8 +X5 +X4 +X3 +X2 +X + 1
Initial State 2 [0 0 0 0 0 0 0 1 1 1 1]

4.2.1 Compass PRN Generation.

In order to generate the Compass E2 PRN, the polynomials for the 11-stage Gold

code must be known. The previous work by Stanford University [9] provided these

expressions, which are listed in Table 4.1. A MATLAB script was written to generate

the 2046 chip PRN with these given expressions.

4.2.2 Compass Signal Acquisition.

Compass signal acquisition is similar to GPS signal acquisition. As mentioned in

the previous section, the E2 signal has a PRN code consisting of 2046 chips with a

2.046 Mchips/sec chipping rate (so it repeats every 1 ms). Although the E2 signal

has a 20 bit secondary code, it is not needed to account for this in the acquisition

process since the secondary code changes only between 1 ms integration intervals.

Since the primary code’s chipping rate is twice that of GPS, more bandwidth is

required for receiving the signal. Therefore, the averaging method used in the GPS

case did not work for Compass (note that further research must be accomplished to

determine the proper number of samples needed to be averaged). The use of the non-

averaging method entails a longer acquisition but also provides a better resolution of

the code phase since all 56,320 samples are used per millisecond block as apposed to

the 5120 samples per block used for GPS. The same FFT search algorithm was used

to calculate the Doppler Shift and precise code phase location. Also, the same peak

matching algorithm was used to determine if consecutive millisecond blocks contained
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a peak at the same location ensuring a successful acquisition. Figure 4.1 shows the

peak of the Compass signal from Data Set 1.

Figure 4.1. Successful Acquisition of Compass Signal

4.2.3 Compass Secondary Code & Tracking.

The Compass data bit structure is the same as GPS, since a data bit is 20 ms in

length. However due to the secondary code, each millisecond is multiplied by one of

the secondary code’s bits. Therefore, in order to successfully track the Compass E2

signal, the secondary code must be determined and then removed from the signal.

A previous secondary code: -1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1 1 1 -1 had been

published by a group from Stanford University [9]. This secondary code worked

correctly for the first data set.

Unfortunately, this code did not correctly line up with the current broadcast

secondary code on the second data set. In order to determine the new secondary
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code, a 400 ms section was processed by the GPS tracking loop. Since the only

difference between tracking GPS and Compass is the secondary code, the tracking

algorithm output the Compass signal with the primary code removed. Figure 4.2

shows a 60 ms portion from the output signal of the 400 ms run. Looking at this

output, the new secondary code can be seen, since it repeats every 20 ms. The

newly determined Neuman Hoffman secondary code for the Compass E2 signal is

-1 -1 -1 -1 -1 1 1 -1 1 1 -1 1 -1 1 -1 -1 -1 1 1 -1. Comparing the previously published

secondary code to the newly determined code, the codes only differ by two bits. Bits

7 and 17 have been flipped in the new code. It is unknown if there is a predetermined

structure to the changing secondary codes, but it is worth investigating in the future.
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Figure 4.2. 60 ms interval of Compass signal highlighting secondary Neuman Hoffman
code. Note the 20 ms secondary code repeating intervals.

Next, the starting bit of the secondary code is determined by rerunning the track-

ing loop with the secondary code until the output is 20 ms long bits. After the correct
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start bit of the secondary code is determined, the tracking process for Compass is the

same for GPS. However, some of the receiver parameters–bit synchronization and Bn

values–were changed in order to better track the Compass signal. These parameter

changes will be further discussed in Sections 4.2.4 and 4.2.5, respectively. The receiver

tracked the Compass E2 signal while holding the PIT at 1 ms in order to determine

that tracking was successful. Figure 4.3 is the full processed data output from the

first data set, and Figure 4.4 shows a smaller section of this output to highlight the

data bits. Similarly, Figure 4.5 is the full processed data output from the second data

set. Clearly shown in Figures 4.3 and 4.5, are large gaps in data bits. It was stated

in previous research that navigation data is not always transmitted by the Compass

satellite [9]. These gaps are approximately 5 s long with a 1.2 s length burst of data.

The gaps actually were beneficial in determining the secondary code since there were

no data bit flips to hinder the decoding.
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Figure 4.3. Compass’ Data Message for Data Set 1. Note the 6 s cycle with approxi-
mately a 1.2 s data burst followed by 5 s of no data.
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Figure 4.4. Compass’ Data Message for Data Set 1 Expanded to Highlight Data Bits

The lock on the signal appears to be lost after 31 seconds in Figure 4.5, but after

further investigation, the secondary code has switched once more back to the first

secondary code. With this code transition in the second data set, further receiver

improvements can be implemented once the secondary code pattern is determined so

that there is no loss of the data message when the codes change.

4.2.4 Bit Synchronization Approach.

After the initial tracking was completed, the receiver was configured to attempt bit

synchronization of the Compass E2 signal. The same approach used in Section 3.6.1

was also used for Compass. The length of which the synchronization was processed

was set to 6 s since this was the length of data burst cycle. The same count threshold,

15, and bit ratio, 3, were used to determine if there was successful bit synchronization.

Figure 4.6 shows the resulting histogram from the first data set. Compared to the
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Figure 4.5. Compass’ Data Message for Data Set 2. Note the 6 s cycle with approxi-
mately a 1.2 s data burst followed by 5 s of no data.

GPS example in Section 3.6.1, there are many more bit flips in other bins. However,

this is due to the fact that this data set had a data message burst instead of a large

gap at the beginning of the collection.

4.2.5 PIT & Bn Changes.

After proper bit synchronization occurred, the PIT can be increased just as it was

with the GPS portion of the receiver. However, the BnD
was held at 5 Hz to allow the

PIT to increase to 20 ms. If the BnD
was decreased from 5 Hz, the DLL discriminator

values would diverge from 0. This was surprising to find since the DLL is fairly robust

to noise when the signal is locked. More research into this phenomenon needs to be

studied. Table 4.2 highlights the changes in PIT and BnP
as the data is processed by

the receiver.
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Figure 4.6. Histogram of a Compass successful bit synchronization. As can be clearly
seen, the number of data bit transitions exceeds the threshold of 15, and the bit ratio
is greater than 3.

After the receiver was modified to correctly change the PIT and Bns, the receiver

was able to properly track the satellite signal. The Doppler shifts for each data set

are shown in Figure 4.7. Figure 4.8 shows the output of the PLL discriminator,

and Figure 4.9 displays the DLL discriminator output. Figure 4.10 shows the time-

domain scatter plot of the Compass E2 signal from Data Set 1. Note the different

concentrations of points due to the increasing PIT length.

4.2.6 C/N0 Calculations.

Compass C/N0 estimates were calculated the same way as GPS as described in

Section 3.6.3. Figure 4.11 shows the calculated C/N0 values for Compass from both

Data Sets. Both plots only start data after the initial 6 s bit synchronization portion

has been completed. Notice that the C/N0 values drop-off in Data Set 2 due to the
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Table 4.2. Summary of Compass PIT and Bn changes. Note that Bnf
is not included

because the FLL is turned off after 120 ms of data is processed.

Time (s) PIT (ms) BnP
(Hz) BnD

(Hz)
0 1 20 5
6 2 15 5
6.2 4 12 5
6.4 20 10 5

unexpected change in the secondary code. The estimates are within a reasonable

range for tracking and are comparable to the GPS estimates in Figures 3.16 and 3.17.

4.3 Galileo GNSS SDR Modifications

This section describes the modification made to the current software receiver in

order to acquire and track the Galileo L1 signal transmitted from the Galileo In Orbit

Validation Element-A (GIOVE-A). The L1 signal is composed of two channels. The

first channel, designated L1-B, is the data channel and is a 4 ms long code used

for data message transmission. The second channel, L1-C, is a pilot channel and

is a longer 8-ms code with a secondary code consisting of 25 bits which lengthens

the period to 200 ms [10, 3]. Also, the Galileo L1 signals use Binary Offset Carrier

(BOC) modulation which will be further described in Section 4.3.2. For the purpose

of tracking and data message decoding, the receiver was only designed for the L1-B

signal.

4.3.1 Galileo PRN Generation.

In order to properly acquire and track the L1-B signal, the 4092 chip length

PRN code needed to be properly generated. The PRN is a 13-stage Gold code.

Previous work from Stanford provided the polynomials and initial states for code

generation [10]. These polynomials and states are listed in Table 4.3. A MATLAB
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Figure 4.7. Compass Doppler Shifts for Both Data Sets. Note that lock is lost on Data
Set 2 after 31 seconds due to the change in the secondary code.

script was written to generate the proper PRN code for the L1-B signal. Once the

correct PRN was generated, the BOC modulation needed to be removed from the

signal.

Table 4.3. GIOVE-A L1-B 13-stage Gold Code Polynomials and Initial States[10].
These polynomials produce the 4092 chip, 4 ms PRN code.

Polynomial 1 X13 +X10 +X9 +X7 +X5 +X4 + 1
Initial State 1 [1 1 1 1 1 1 1 1 1 1 1 1 1]
Polynomial 2 X13 +X12 +X8 +X7 +X6 +X5 + 1
Initial State 2 [1 1 0 1 1 1 0 0 0 0 0 1 1]
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Figure 4.8. Compass PLL Discriminator Output for Data Set 1.

4.3.2 Binary Offset Carrier.

BOC is a type of modulation that spreads the signal into two main lobes around

the carrier frequency. This is done by mixing the signal with another square wave.

BOC(a, b) is commonly-used BOC notation and indicates the carrier frequency of the

BOC is a × 1.023 MHz and the spreading code chipping rate is b × 1.023 MHz [6].

The L1-B channel is a BOC(1,1) modulation [3]. Equation (30) shows the structure

of the L1-B signal as transmitted from the satellite,

sL1−B(t) =
A√
2
SC(t)CL1−B(t)D(t) cos(2�fct+ �) (30)

where A is the signal amplitude, SC(t) is the BOC(1,1) modulated spreading wave-

form, CL1−B(t) is the L1-B PRN coded waveform, D(t) is the 250 bit/s data message

and fc = 1575.42 MHz is the L1 carrier frequency.
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Figure 4.9. Compass DLL Discriminator Output for Data Set 1.

4.3.3 Galileo Signal Acquisition.

The acquisition process for Galileo is similar to that of GPS and Compass. How-

ever, since a Galileo data bit is 4 ms in length, the PIT is also 4 ms. Therefore a

larger code phase needs to be searched. Since the PIT is 4 ms, this also increases

the number of Doppler bins since the size of each Doppler bin decreased to 167 Hz

based on Equation (5) from Section 2.5.1.1. This increases the computing time of

the algorithm as does the fact that the samples, like Compass’ samples, cannot be

averaged the same as GPS due to the wider bandwidth of the signal. Figure 4.12

shows the peak of the L1-B signal Data Set 1.

4.3.4 Tracking Initialization.

The tracking of the GIOVE-A L1-B signal was successfully accomplished by mak-

ing minor changes to the current receiver. The PIT is left at a constant 4 ms because
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Figure 4.10. Compass Time Domain Scatter Plot. This illustrates that all the data
message is in the In-Phase portion of the signal. The tight groupings indicate a strong
lock on the signal. Note that the points start near the center and then increase due to
the increasing PIT. The points that are off of the I-axis occurred during initial pull-in.

the data message bits are transmitted at 250 bits/s, which equates to 4 ms. Due to

this fact, the receiver was coded to start the tracking process at the first full PRN

epoch. As done with GPS and Compass, the receiver always processed the data in

1 ms blocks, but then for Galileo, the correlator outputs were then summed over 4 ms

intervals corresponding to the full PRN code length epochs.

4.3.5 Correlation Differences.

Next, since the signal has the BOC(1,1) modulation, this is wiped off during the

correlation phase of the receiver. The BOC modulation also changes the autocor-

relation plot to include two smaller peaks along with the much larger main peak.

Figure 4.13 shows an example of this function’s output. Therefore, in addition to the
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Figure 4.11. Compass C/N0 Estimates. It must be noted that the drop-off in the C/N0

values from Data Set 2 occurred due to the fact that the secondary code switched and
was not accounted for by the receiver since the code pattern is unknown.

IE , IP , IL, QE, QP and QL correlators, two additional correlators for each channel are

added to ensure the tracking of the proper peak. This correlators are referred to as

Very Early and Very Late and produce IV E , IV L, QV E , and QV L outputs. In order

to properly track the BOC signal, the main peak should always be greater than the

other two peaks, and the very early and very late outputs should be nearly equal to

each other and less than the other three outputs. Figure 4.14 shows a plot of the

correlator outputs to illustrate the difference in peak values for these correlators.

4.3.6 4 ms PIT Tracking Considerations.

Since the PRN code and data bit are both 4 ms in length, there are special

considerations for tracking the GIOVE-A L1-B signal. As previously mentioned in

Section 4.3.4, the initialization of the tracking loop needs to be properly synchronized
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Figure 4.12. Successful Acquisition of GIOVE-A Signal

to the beginning of a data bit. Next, the Bn values are set at BnF
= 20 Hz, BnP

=

12 Hz and BnD
= 0.25 Hz and held constant throughout the signal processing. Finally,

due to the PIT length being the same length of a data bit, there is no need for

bit synchronization. This is a benefit of the Galileo signal structure. After these

modifications were made, the signal was easily tracked. The Doppler Shifts for each

run are presented in Figure 4.15. Figures 4.16 and 4.17 show the PLL and DLL

discriminator outputs, respectively. A time-domain scatter plot of the In-Phase versus

Quadrature arms of the signal is presented in Figure 4.18. Notice that the groupings

do not change distances unlike the similar GPS and Compass scatter plots. This

is due to the constant PIT of 4 ms. Finally, a portion of the final data bits are

highlighted in Figure 4.19.
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Figure 4.13. BOC(1,1) Autocorrelation Function

4.3.7 C/N0 Calculations.

The C/N0 values for the E2 L1-B signal were calculated using the same equations

for GPS and Compass. However, since the Galileo data bit length is 4 ms compared to

the 20 ms data bit length for GPS and Compass, the M in Equation (28) is changed

to 4. Figure 4.20 displays the C/N0 values for both data sets. The values are ap-

proximately 10-15 dB lower compared to the GPS and Compass values. However,

the signal strength is still strong enough to enable tracking which has been demon-

strated through the previous sections. More research will need to be accomplished to

determine why these levels are lower.

4.4 Summary

This chapter described the modifications made to the GPS-only software receiver

to allow tracking of Compass and Galileo satellites. For Compass, the main issue that
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Figure 4.14. GIOVE-A Correlation Outputs. Notice that the Prompt Correlator is the
largest value. This indicates that the receiver is properly tracking the GIOVE-A L1-B
signal.

was addressed was the addition of a secondary code that neither GPS nor Galileo have.

It was also found that there are at least two different secondary codes for Compass.

After the secondary codes were determined, the tracking procedure was very similar

to the GPS tracking due to the similarities in the primary code structure. The bit

synchronization time frame was increased to 6 seconds due to the large gaps that

were present in the data output. Finally, the C/N0 estimations were calculated and

were at reasonable levels.

Next, the modifications for the Galileo satellite, GIOVE-A, were presented. The

main differences of the longer 4 ms PIT and BOC modulation were discussed. The

benefit of the GIOVE-A L1-B signal structure was explained due to the fact that

no bit synchronization was needed. Finally, the GIOVE-A L1-B signal’s C/N0 were

calculated, but they were 10-15 dB lower than GPS and Compass.
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Figure 4.15. GIOVE-A Doppler Shifts for Both Data Sets
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Figure 4.16. GIOVE-A L1-B PLL Discriminator Output from Data Set 2.
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Figure 4.17. GIOVE-A L1-B DLL Discriminator Output from Data Set 2.
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Figure 4.18. GIOVE-A Time Domain Scatter Plot. This illustrates that the data
message is in the In-Phase portion of the signal. The points that are off of the I-
axis occurred during initial pull-in. The tight groupings indicate a strong lock on the
signal. Note that the points stay at the same distance compared to the GPS and
Compass scatter plots which have groupings at different distances. This is due to the
fact that the GIOVE-A L1-B signal is run with a constant PIT of 4 ms.
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Figure 4.20. GIOVE-A C/N0 Estimates.
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V. Summary and Conclusions

5.1 Summary

This thesis describes an initial GNSS software receiver architecture that AFIT

will be using for GNSS receiver research. Due to the growing number of satellites and

signals in our skies, this research provides an important first step towards enabling

studies of emerging systems and signals. The second chapter provided background

information on the major GNSS systems as well as details on how a software receiver

generally operates. There are many aspects of the receiver that have to be working

properly in order to acquire, track and eventually decode a navigation message. The

third chapter explained how the receiver was configured for the United States’ GPS

system. The satellites were successfully acquired, tracked, decoded and position esti-

mates were calculated. The fourth chapter described the modifications made under

this research to the GNSS receiver to allow acquisition and tracking of China’s Com-

pass system. Also in this chapter, the modifications for the European Union’s Galileo

GNSS GIOVE-A satellite were presented to allow proper acquisition and tracking of

the L1-B signal.

5.2 Conclusions

Chapter 3 explained how the receiver was set up for the GPS system. The results

showed excellent tracking performance since the receiver did not lose lock on the satel-

lites enabling the data message to be output. After the signal was properly tracked,

the navigation message was partially decoded in order to calculate pseudorange esti-

mates to allow an estimate of the user’s position. The errors in the North and East

directions were under 10 m for Data Set 1 and around 30 m for Data Set 2. Since

no other corrections were implemented to improve the pseudorange estimates, such
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as ionospheric or tropospheric errors, these represent reasonable position estimates.

Chapter 4 first described the Compass GNSS modifications. Due to the addi-

tion of a secondary code to the primary PRN code, more analysis was performed to

discover that there are two secondary codes that are transmitted at different times.

Unfortunately with the short duration data sets, the pattern of these codes could not

be determined. Until official Compass documentation is published, this pattern may

remain unknown. Also, since there is no official documentation the structure of the

navigation message is unknown as well. Therefore, the navigation message could not

be decoded by this software receiver. After the secondary codes were determined,

the tracking process was continued. The Compass discriminator output plots show

excellent results for the tracking process.

The latter part of Chapter 4 explained the changes made to the receiver to in-

corporate the Galileo system’s GIOVE-A L1-B signal. The GIOVE-A signal also

employs a more modern Binary Offset Carrier (BOC) spreading signal. This mod-

ulation spreads the signal into two main peaks to reduce the interference with the

GPS L1 C/A code signal at the same carrier frequency. Since the PRN length and

navigation bit are both 4 ms in length, this made the PIT a constant 4 ms. This

allowed the receiver to start with smaller noise bandwidths. Also, there was no need

to perform bit synchronization due to the same PIT and data bit length. Finally, the

GIOVE-A results show excellent evidence of successful L1-B signal tracking. Unfor-

tunately, since there are only two Galileo satellites in service, position estimates are

unable to be accomplished even though the message can be decoded.

5.3 Further Research & Recommendations

Since the duration of a data collection was limited to the storage size of a standard

DVD, longer duration collections will need to be examined once the final hardware is

81



set up at AFIT. This will allow collections at any time and of any size. Once this can

be accomplished, full decoding of the GPS and GIOVE-A signal can begin. With the

addition of GIOVE-A ephemeris data, the implementation of a GPS/Galileo position

estimate may be possible. Another advantage of using longer duration collections is

the further studying of the Compass secondary code pattern. If this pattern can be

determined, then the receiver can be properly configured to track the signal when-

ever the satellite is in-view. This will allow uninterrupted research of the navigation

message.

In terms of the GNSS software receiver, updates to the code to allow a Graphical

User Interface can be easily made. Also, more pseudorange error corrections can be

added to the receiver to account for atmospheric propagation or multipath mitigation.

Once the receiver is on-site and more frequency bands are able to be studied, the new

GPS, GIOVE-B, and future Compass satellites and signals can be incorporated into

the receiver. Finally, the biggest improvement that can be made to the receiver is the

ability to have it run in real-time. This would be the final goal of the receiver since

it would allow real-time studying of signals.
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